

Welcome to doubt’s documentation!

Contents:

	doubt
	doubt package

Indices and tables

	Index

	Module Index

	Search Page

doubt

	doubt package
	Subpackages
	doubt.datasets package
	Submodules

	doubt.datasets.airfoil module

	doubt.datasets.bike_sharing_daily module

	doubt.datasets.bike_sharing_hourly module

	doubt.datasets.blog module

	doubt.datasets.concrete module

	doubt.datasets.cpu module

	doubt.datasets.facebook_comments module

	doubt.datasets.facebook_metrics module

	doubt.datasets.fish_bioconcentration module

	doubt.datasets.fish_toxicity module

	doubt.datasets.forest_fire module

	doubt.datasets.gas_turbine module

	doubt.datasets.nanotube module

	doubt.datasets.new_taipei_housing module

	doubt.datasets.parkinsons module

	doubt.datasets.power_plant module

	doubt.datasets.protein module

	doubt.datasets.servo module

	doubt.datasets.solar_flare module

	doubt.datasets.space_shuttle module

	doubt.datasets.stocks module

	doubt.datasets.superconductivity module

	doubt.datasets.tehran_housing module

	doubt.datasets.yacht module

	Module contents

	doubt.models package
	Subpackages

	Module contents

	Module contents

doubt package

Subpackages

	doubt.datasets package
	Submodules

	doubt.datasets.airfoil module

	doubt.datasets.bike_sharing_daily module

	doubt.datasets.bike_sharing_hourly module

	doubt.datasets.blog module

	doubt.datasets.concrete module

	doubt.datasets.cpu module

	doubt.datasets.facebook_comments module

	doubt.datasets.facebook_metrics module

	doubt.datasets.fish_bioconcentration module

	doubt.datasets.fish_toxicity module

	doubt.datasets.forest_fire module

	doubt.datasets.gas_turbine module

	doubt.datasets.nanotube module

	doubt.datasets.new_taipei_housing module

	doubt.datasets.parkinsons module

	doubt.datasets.power_plant module

	doubt.datasets.protein module

	doubt.datasets.servo module

	doubt.datasets.solar_flare module

	doubt.datasets.space_shuttle module

	doubt.datasets.stocks module

	doubt.datasets.superconductivity module

	doubt.datasets.tehran_housing module

	doubt.datasets.yacht module

	Module contents

	doubt.models package
	Subpackages
	doubt.models.boot package
	Submodules

	doubt.models.boot.boot module

	Module contents

	doubt.models.glm package
	Submodules

	doubt.models.glm.quantile_loss module

	doubt.models.glm.quantile_regressor module

	Module contents

	doubt.models.tree package
	Submodules

	doubt.models.tree.forest module

	doubt.models.tree.tree module

	doubt.models.tree.utils module

	Module contents

	Module contents

Module contents

doubt.datasets package

Submodules

doubt.datasets.airfoil module

Airfoil data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.airfoil.Airfoil(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

The NASA data set comprises different size NACA 0012 airfoils at various
wind tunnel speeds and angles of attack. The span of the airfoil and the
observer position were the same in all of the experiments.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	int:
	Frequency, in Hertzs

	float:
	Angle of attack, in degrees

	float:
	Chord length, in meters

	float:
	Free-stream velocity, in meters per second

	float:
	Suction side displacement thickness, in meters

	Targets:
	
	float:
	Scaled sound pressure level, in decibels

	Source:
	https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

Examples

Load in the data set:

>>> dataset = Airfoil()
>>> dataset.shape
(1503, 6)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((1503, 5), (1503,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((1181, 5), (1181,), (322, 5), (322,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.bike_sharing_daily module

Daily bike sharing data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.bike_sharing_daily.BikeSharingDaily(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Bike sharing systems are new generation of traditional bike rentals where
whole process from membership, rental and return back has become automatic.
Through these systems, user is able to easily rent a bike from a
particular position and return back at another position. Currently, there
are about over 500 bike-sharing programs around the world which is
composed of over 500 thousands bicycles. Today, there exists great
interest in these systems due to their important role in traffic,
environmental and health issues.

Apart from interesting real world applications of bike sharing systems,
the characteristics of data being generated by these systems make them
attractive for the research. Opposed to other transport services such as
bus or subway, the duration of travel, departure and arrival position is
explicitly recorded in these systems. This feature turns bike sharing
system into a virtual sensor network that can be used for sensing mobility
in the city. Hence, it is expected that most of important events in the
city could be detected via monitoring these data.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	instant (int):
	Record index

	season (int):
	The season, with 1 = winter, 2 = spring, 3 = summer and 4 = autumn

	yr (int):
	The year, with 0 = 2011 and 1 = 2012

	mnth (int):
	The month, from 1 to 12 inclusive

	holiday (int):
	Whether day is a holiday or not, binary valued

	weekday (int):
	The day of the week, from 0 to 6 inclusive

	workingday (int):
	Working day, 1 if day is neither weekend nor holiday, otherwise 0

	weathersit (int):
	Weather, encoded as

	Clear, few clouds, partly cloudy

	Mist and cloudy, mist and broken clouds, mist and few clouds

	Light snow, light rain and thunderstorm and scattered clouds,
light rain and scattered clouds

	Heavy rain and ice pallets and thunderstorm and mist, or snow
and fog

	temp (float):
	Max-min normalised temperature in Celsius, from -8 to +39

	atemp (float):
	Max-min normalised feeling temperature in Celsius, from -16 to +50

	hum (float):
	Scaled max-min normalised humidity, from 0 to 1

	windspeed (float):
	Scaled max-min normalised wind speed, from 0 to 1

	Targets:
	
	casual (int):
	Count of casual users

	registered (int):
	Count of registered users

	cnt (int):
	Sum of casual and registered users

	Source:
	https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Examples

Load in the data set:

>>> dataset = BikeSharingDaily()
>>> dataset.shape
(731, 15)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((731, 12), (731, 3))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((574, 12), (574, 3), (157, 12), (157, 3))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.bike_sharing_hourly module

Hourly bike sharing data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.bike_sharing_hourly.BikeSharingHourly(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Bike sharing systems are new generation of traditional bike rentals where
whole process from membership, rental and return back has become automatic.
Through these systems, user is able to easily rent a bike from a
particular position and return back at another position. Currently, there
are about over 500 bike-sharing programs around the world which is
composed of over 500 thousands bicycles. Today, there exists great
interest in these systems due to their important role in traffic,
environmental and health issues.

Apart from interesting real world applications of bike sharing systems,
the characteristics of data being generated by these systems make them
attractive for the research. Opposed to other transport services such as
bus or subway, the duration of travel, departure and arrival position is
explicitly recorded in these systems. This feature turns bike sharing
system into a virtual sensor network that can be used for sensing mobility
in the city. Hence, it is expected that most of important events in the
city could be detected via monitoring these data.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	instant (int):
	Record index

	season (int):
	The season, with 1 = winter, 2 = spring, 3 = summer and 4 = autumn

	yr (int):
	The year, with 0 = 2011 and 1 = 2012

	mnth (int):
	The month, from 1 to 12 inclusive

	hr (int):
	The hour of the day, from 0 to 23 inclusive

	holiday (int):
	Whether day is a holiday or not, binary valued

	weekday (int):
	The day of the week, from 0 to 6 inclusive

	workingday (int):
	Working day, 1 if day is neither weekend nor holiday, otherwise 0

	weathersit (int):
	Weather, encoded as

	Clear, few clouds, partly cloudy

	Mist and cloudy, mist and broken clouds, mist and few clouds

	Light snow, light rain and thunderstorm and scattered clouds,
light rain and scattered clouds

	Heavy rain and ice pallets and thunderstorm and mist, or snow
and fog

	temp (float):
	Max-min normalised temperature in Celsius, from -8 to +39

	atemp (float):
	Max-min normalised feeling temperature in Celsius, from -16 to +50

	hum (float):
	Scaled max-min normalised humidity, from 0 to 1

	windspeed (float):
	Scaled max-min normalised wind speed, from 0 to 1

	Targets:
	
	casual (int):
	Count of casual users

	registered (int):
	Count of registered users

	cnt (int):
	Sum of casual and registered users

	Source:
	https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Examples

Load in the data set:

>>> dataset = BikeSharingHourly()
>>> dataset.shape
(17379, 16)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((17379, 13), (17379, 3))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((13873, 13), (13873, 3), (3506, 13), (3506, 3))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.blog module

Blog post data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.blog.Blog(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This data originates from blog posts. The raw HTML-documents
of the blog posts were crawled and processed.
The prediction task associated with the data is the prediction
of the number of comments in the upcoming 24 hours. In order
to simulate this situation, we choose a basetime (in the past)
and select the blog posts that were published at most
72 hours before the selected base date/time. Then, we calculate
all the features of the selected blog posts from the information
that was available at the basetime, therefore each instance
corresponds to a blog post. The target is the number of
comments that the blog post received in the next 24 hours
relative to the basetime.

In the train data, the basetimes were in the years
2010 and 2011. In the test data the basetimes were
in February and March 2012. This simulates the real-world
situtation in which training data from the past is available
to predict events in the future.

The train data was generated from different basetimes that may
temporally overlap. Therefore, if you simply split the train
into disjoint partitions, the underlying time intervals may
overlap. Therefore, the you should use the provided, temporally
disjoint train and test splits in order to ensure that the
evaluation is fair.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	Features 0-49 (float):
	50 features containing the average, standard deviation,
minimum, maximum and median of feature 50-59 for the source
of the current blog post, by which we mean the blog on which
the post appeared. For example, myblog.blog.org would be the
source of the post myblog.blog.org/post_2010_09_10

	Feature 50 (int):
	Total number of comments before basetime

	Feature 51 (int):
	Number of comments in the last 24 hours before the basetime

	Feature 52 (int):
	If T1 is the datetime 48 hours before basetime and T2 is the
datetime 24 hours before basetime, then this is the number of
comments in the time period between T1 and T2

	Feature 53 (int):
	Number of comments in the first 24 hours after the publication
of the blog post, but before basetime

	Feature 54 (int):
	The difference between Feature 51 and Feature 52

	Features 55-59 (int):
	The same thing as Features 50-51, but for links (trackbacks)
instead of comments

	Feature 60 (float):
	The length of time between the publication of the blog post
and basetime

	Feature 61 (int):
	The length of the blog post

	Features 62-261 (int):
	The 200 bag of words features for 200 frequent words of the
text of the blog post

	Features 262-268 (int):
	Binary indicators for the weekday (Monday-Sunday) of the basetime

	Features 269-275 (int):
	Binary indicators for the weekday (Monday-Sunday) of the date
of publication of the blog post

	Feature 276 (int):
	Number of parent pages: we consider a blog post P as a parent
of blog post B if B is a reply (trackback) to P

	Features 277-279 (float):
	Minimum, maximum and average of the number of comments the
parents received

	Targets:
	
	int: The number of comments in the next 24 hours (relative to
	baseline)

	Source:
	https://archive.ics.uci.edu/ml/datasets/BlogFeedback

Examples

Load in the data set:

>>> dataset = Blog()
>>> dataset.shape
(52397, 281)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((52397, 279), (52397,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((41949, 279), (41949,), (10448, 279), (10448,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.concrete module

Concrete data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.concrete.Concrete(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Concrete is the most important material in civil engineering. The concrete
compressive strength is a highly nonlinear function of age and
ingredients.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	Cement (float):
	Kg of cement in an m3 mixture

	Blast Furnace Slag (float):
	Kg of blast furnace slag in an m3 mixture

	Fly Ash (float):
	Kg of fly ash in an m3 mixture

	Water (float):
	Kg of water in an m3 mixture

	Superplasticiser (float):
	Kg of superplasticiser in an m3 mixture

	Coarse Aggregate (float):
	Kg of coarse aggregate in an m3 mixture

	Fine Aggregate (float):
	Kg of fine aggregate in an m3 mixture

	Age (int):
	Age in days, between 1 and 365 inclusive

	Targets:
	
	Concrete Compressive Strength (float):
	Concrete compressive strength in megapascals

	Source:
	https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Examples

Load in the data set:

>>> dataset = Concrete()
>>> dataset.shape
(1030, 9)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((1030, 8), (1030,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((807, 8), (807,), (223, 8), (223,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.cpu module

CPU data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.cpu.CPU(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Relative CPU Performance Data, described in terms of its cycle time,
memory size, etc.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	vendor_name (string):
	Name of the vendor, 30 unique values

	model_name (string):
	Name of the model

	myct (int):
	Machine cycle time in nanoseconds

	mmin (int):
	Minimum main memory in kilobytes

	mmax (int):
	Maximum main memory in kilobytes

	cach (int):
	Cache memory in kilobytes

	chmin (int):
	Minimum channels in units

	chmax (int):
	Maximum channels in units

	Targets:
	
	prp (int):
	Published relative performance

	Source:
	https://archive.ics.uci.edu/ml/datasets/Computer+Hardware

Examples

Load in the data set:

>>> dataset = CPU()
>>> dataset.shape
(209, 9)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((209, 8), (209,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((162, 8), (162,), (47, 8), (47,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.facebook_comments module

Facebook comments data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.facebook_comments.FacebookComments(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Instances in this dataset contain features extracted from Facebook posts.
The task associated with the data is to predict how many comments the
post will receive.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	page_popularity (int):
	Defines the popularity of support for the source of the document

	page_checkins (int):
	Describes how many individuals so far visited this place. This
feature is only associated with places; e.g., some institution,
place, theater, etc.

	page_talking_about (int):
	Defines the daily interest of individuals towards source of the
document/post. The people who actually come back to the page,
after liking the page. This include activities such as comments,
likes to a post, shares etc., by visitors to the page

	page_category (int):
	Defines the category of the source of the document; e.g., place,
institution, branch etc.

	agg[n] for n=0..24 (float):
	These features are aggreagted by page, by calculating min, max,
average, median and standard deviation of essential features

	cc1 (int):
	The total number of comments before selected base date/time

	cc2 (int):
	The number of comments in the last 24 hours, relative to base
date/time

	cc3 (int):
	The number of comments in the last 48 to last 24 hours relative
to base date/time

	cc4 (int):
	The number of comments in the first 24 hours after the publication
of post but before base date/time

	cc5 (int):
	The difference between cc2 and cc3

	base_time (int):
	Selected time in order to simulate the scenario, ranges from 0
to 71

	post_length (int):
	Character count in the post

	post_share_count (int):
	This feature counts the number of shares of the post, how many
people had shared this post onto their timeline

	post_promotion_status (int):
	Binary feature. To reach more people with posts in News Feed,
individuals can promote their post and this feature indicates
whether the post is promoted or not

	h_local (int):
	This describes the hours for which we have received the target
variable/comments. Ranges from 0 to 23

	day_published[n] for n=0..6 (int):
	Binary feature. This represents the day (Sunday-Saturday) on
which the post was published

	day[n] for n=0..6 (int):
	Binary feature. This represents the day (Sunday-Saturday) on
selected base date/time

	Targets:
	ncomments (int): The number of comments in the next h_local hours

	Source:
	https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset

Examples

Load in the data set:

>>> dataset = FacebookComments()
>>> dataset.shape
(199030, 54)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((199030, 54), (199030,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((159211, 54), (159211,), (39819, 54), (39819,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.facebook_metrics module

Facebook metrics data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.facebook_metrics.FacebookMetrics(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

The data is related to posts’ published during the year of 2014 on the
Facebook’s page of a renowned cosmetics brand.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	page_likes(int):
	The total number of likes of the Facebook page at the given time.

	post_type (int):
	The type of post. Here 0 means ‘Photo’, 1 means ‘Status’, 2 means
‘Link’ and 3 means ‘Video’

	post_category (int):
	The category of the post.

	post_month (int):
	The month the post was posted, from 1 to 12 inclusive.

	post_weekday (int):
	The day of the week the post was posted, from 1 to 7 inclusive.

	post_hour (int):
	The hour the post was posted, from 0 to 23 inclusive

	paid (int):
	Binary feature, whether the post was paid for.

	Targets:
	
	total_reach (int):
	The lifetime post total reach.

	total_impressions (int):
	The lifetime post total impressions.

	engaged_users (int):
	The lifetime engaged users.

	post_consumers (int):
	The lifetime post consumers.

	post_consumptions (int):
	The lifetime post consumptions.

	post_impressions (int):
	The lifetime post impressions by people who liked the page.

	post_reach (int):
	The lifetime post reach by people who liked the page.

	post_engagements (int):
	The lifetime people who have liked the page and engaged with
the post.

	comments (int):
	The number of comments.

	shares (int):
	The number of shares.

	total_interactions (int):
	The total number of interactions

	Source:
	https://archive.ics.uci.edu/ml/datasets/Facebook+metrics

Examples

Load in the data set:

>>> dataset = FacebookMetrics()
>>> dataset.shape
(500, 18)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((500, 7), (500, 11))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((388, 7), (388, 11), (112, 7), (112, 11))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.fish_bioconcentration module

Fish bioconcentration data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.fish_bioconcentration.FishBioconcentration(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This dataset contains manually-curated experimental bioconcentration
factor (BCF) for 1058 molecules (continuous values). Each row contains a
molecule, identified by a CAS number, a name (if available), and a SMILES
string. Additionally, the KOW (experimental or predicted) is reported. In
this database, you will also find Extended Connectivity Fingerprints
(binary vectors of 1024 bits), to be used as independent variables to
predict the BCF.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	logkow (float):
	Octanol water paritioning coefficient (experimental or predicted,
as indicated by KOW type

	kow_exp (int):
	Indicates whether logKOW is experimental or predicted, with 1
denoting experimental and 0 denoting predicted

	smiles_[idx] for idx = 0..125 (int):
	Encoding of SMILES string to identify the 2D molecular structure.
The encoding is as follows, where ‘x’ is a padding string to
ensure that all the SMILES strings are of the same length:

	0 = ‘x’

	1 = ‘#’

	2 = ‘(‘

	3 = ‘)’

	4 = ‘+’

	5 = ‘-‘

	6 = ‘/’

	7 = ‘1’

	8 = ‘2’

	9 = ‘3’

	10 = ‘4’

	11 = ‘5’

	12 = ‘6’

	13 = ‘7’

	14 = ‘8’

	15 = ‘=’

	16 = ‘@’

	17 = ‘B’

	18 = ‘C’

	19 = ‘F’

	20 = ‘H’

	21 = ‘I’

	22 = ‘N’

	23 = ‘O’

	24 = ‘P’

	25 = ‘S’

	26 = ‘[‘

	27 = ‘'

	28 = ‘]’

	29 = ‘c’

	30 = ‘i’

	31 = ‘l’

	32 = ‘n’

	33 = ‘o’

	34 = ‘r’

	35 = ‘s’

	Targets:
	
	logbcf (float):
	Experimental fish bioconcentration factor (logarithm form)

	Source:
	https://archive.ics.uci.edu/ml/datasets/QSAR+fish+bioconcentration+factor+%28BCF%29

Examples

Load in the data set:

>>> dataset = FishBioconcentration()
>>> dataset.shape
(1054, 129)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((1054, 128), (1054,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((825, 128), (825,), (229, 128), (229,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.fish_toxicity module

Fish toxicity data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.fish_toxicity.FishToxicity(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This dataset was used to develop quantitative regression QSAR models to
predict acute aquatic toxicity towards the fish Pimephales promelas
(fathead minnow) on a set of 908 chemicals. LC50 data, which is the
concentration that causes death in 50% of test fish over a test duration
of 96 hours, was used as model response

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	CIC0 (float):
	Information indices

	SM1_Dz(Z) (float):
	2D matrix-based descriptors

	GATS1i (float):
	2D autocorrelations

	NdsCH (int)
	Atom-type counts

	NdssC (int)
	Atom-type counts

	MLOGP (float):
	Molecular properties

	Targets:
	
	LC50 (float):
	A concentration that causes death in 50% of test fish over a
test duration of 96 hours. In -log(mol/L) units.

	Source:
	https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity

Examples

Load in the data set:

>>> dataset = FishToxicity()
>>> dataset.shape
(908, 7)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((908, 6), (908,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((708, 6), (708,), (200, 6), (200,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.forest_fire module

Forest fire data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.forest_fire.ForestFire(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This is a difficult regression task, where the aim is to predict the
burned area of forest fires, in the northeast region of Portugal, by
using meteorological and other data.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	X (float):
	The x-axis spatial coordinate within the Montesinho park map.
Ranges from 1 to 9.

	Y (float):
	The y-axis spatial coordinate within the Montesinho park map
Ranges from 2 to 9.

	month (int):
	Month of the year. Ranges from 0 to 11

	day (int):
	Day of the week. Ranges from 0 to 6

	FFMC (float):
	FFMC index from the FWI system. Ranges from 18.7 to 96.20

	DMC (float):
	DMC index from the FWI system. Ranges from 1.1 to 291.3

	DC (float):
	DC index from the FWI system. Ranges from 7.9 to 860.6

	ISI (float):
	ISI index from the FWI system. Ranges from 0.0 to 56.1

	temp (float):
	Temperature in Celsius degrees. Ranges from 2.2 to 33.3

	RH (float):
	Relative humidity in %. Ranges from 15.0 to 100.0

	wind (float):
	Wind speed in km/h. Ranges from 0.4 to 9.4

	rain (float):
	Outside rain in mm/m2. Ranges from 0.0 to 6.4

	Targets:
	
	area (float):
	The burned area of the forest (in ha). Ranges from 0.00 to 1090.84

Notes

The target variable is very skewed towards 0.0, thus it may make
sense to model with the logarithm transform.

	Source:
	https://archive.ics.uci.edu/ml/datasets/Forest+Fires

Examples

Load in the data set:

>>> dataset = ForestFire()
>>> dataset.shape
(517, 13)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((517, 12), (517,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((401, 12), (401,), (116, 12), (116,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.gas_turbine module

Gas turbine data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.gas_turbine.GasTurbine(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Data have been generated from a sophisticated simulator of a Gas Turbines
(GT), mounted on a Frigate characterized by a COmbined Diesel eLectric
And Gas (CODLAG) propulsion plant type.

The experiments have been carried out by means of a numerical simulator of
a naval vessel (Frigate) characterized by a Gas Turbine (GT) propulsion
plant. The different blocks forming the complete simulator (Propeller,
Hull, GT, Gear Box and Controller) have been developed and fine tuned over
the year on several similar real propulsion plants. In view of these
observations the available data are in agreement with a possible real
vessel.

In this release of the simulator it is also possible to take into account
the performance decay over time of the GT components such as GT compressor
and turbines.

The propulsion system behaviour has been described with this parameters:

	Ship speed (linear function of the lever position lp).

	Compressor degradation coefficient kMc.

	Turbine degradation coefficient kMt.

so that each possible degradation state can be described by a combination
of this triple (lp,kMt,kMc).

The range of decay of compressor and turbine has been sampled with an
uniform grid of precision 0.001 so to have a good granularity of
representation.

In particular for the compressor decay state discretization the kMc
coefficient has been investigated in the domain [1; 0.95], and the turbine
coefficient in the domain [1; 0.975].

Ship speed has been investigated sampling the range of feasible speed from
3 knots to 27 knots with a granularity of representation equal to tree
knots.

A series of measures (16 features) which indirectly represents of the
state of the system subject to performance decay has been acquired and
stored in the dataset over the parameter’s space.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	lever_position (float)
	The position of the lever

	ship_speed (float):
	The ship speed, in knots

	shaft_torque (float):
	The shaft torque of the gas turbine, in kN m

	turbine_revolution_rate (float):
	The gas turbine rate of revolutions, in rpm

	generator_revolution_rate (float):
	The gas generator rate of revolutions, in rpm

	starboard_propeller_torque (float):
	The torque of the starboard propeller, in kN

	port_propeller_torque (float):
	The torque of the port propeller, in kN

	turbine_exit_temp (float):
	Height pressure turbine exit temperature, in celcius

	inlet_temp (float):
	Gas turbine compressor inlet air temperature, in celcius

	outlet_temp (float):
	Gas turbine compressor outlet air temperature, in celcius

	turbine_exit_pres (float):
	Height pressure turbine exit pressure, in bar

	inlet_pres (float):
	Gas turbine compressor inlet air pressure, in bar

	outlet_pres (float):
	Gas turbine compressor outlet air pressure, in bar

	exhaust_pres (float):
	Gas turbine exhaust gas pressure, in bar

	turbine_injection_control (float):
	Turbine injection control, in percent

	fuel_flow (float):
	Fuel flow, in kg/s

	Targets:
	
	compressor_decay (type):
	Gas turbine compressor decay state coefficient

	turbine_decay (type):
	Gas turbine decay state coefficient

	Source:
	https://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants

Examples

Load in the data set:

>>> dataset = GasTurbine()
>>> dataset.shape
(11934, 18)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((11934, 16), (11934, 2))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((9516, 16), (9516, 2), (2418, 16), (2418, 2))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.nanotube module

Nanotube data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.nanotube.Nanotube(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

CASTEP can simulate a wide range of properties of materials proprieties
using density functional theory (DFT). DFT is the most successful method
calculates atomic coordinates faster than other mathematical approaches,
and it also reaches more accurate results. The dataset is generated with
CASTEP using CNT geometry optimization. Many CNTs are simulated in CASTEP,
then geometry optimizations are calculated. Initial coordinates of all
carbon atoms are generated randomly. Different chiral vectors are used for
each CNT simulation.

The atom type is selected as carbon, bond length is used as 1.42 AÂ°
(default value). CNT calculation parameters are used as default
parameters. To finalize the computation, CASTEP uses a parameter named
as elec_energy_tol (electrical energy tolerance) (default 1x10-5 eV)
which represents that the change in the total energy from one iteration to
the next remains below some tolerance value per atom for a few
self-consistent field steps. Initial atomic coordinates (u, v, w), chiral
vector (n, m) and calculated atomic coordinates (u, v, w) are
obtained from the output files.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	Chiral indice n (int):
	n parameter of the selected chiral vector

	Chiral indice m (int):
	m parameter of the selected chiral vector

	Initial atomic coordinate u (float):
	Randomly generated u parameter of the initial atomic coordinates
of all carbon atoms.

	Initial atomic coordinate v (float):
	Randomly generated v parameter of the initial atomic coordinates
of all carbon atoms.

	Initial atomic coordinate w (float):
	Randomly generated w parameter of the initial atomic coordinates
of all carbon atoms.

	Targets:
	
	Calculated atomic coordinates u (float):
	Calculated u parameter of the atomic coordinates of all
carbon atoms

	Calculated atomic coordinates v (float):
	Calculated v parameter of the atomic coordinates of all
carbon atoms

	Calculated atomic coordinates w (float):
	Calculated w parameter of the atomic coordinates of all
carbon atoms

	Sources:
	https://archive.ics.uci.edu/ml/datasets/Carbon+Nanotubes
https://doi.org/10.1007/s00339-016-0153-1
https://doi.org/10.17341/gazimmfd.337642

Examples

Load in the data set:

>>> dataset = Nanotube()
>>> dataset.shape
(10721, 8)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((10721, 5), (10721, 3))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((8541, 5), (8541, 3), (2180, 5), (2180, 3))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.new_taipei_housing module

New Taipei Housing data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.new_taipei_housing.NewTaipeiHousing(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

The “real estate valuation” is a regression problem. The market historical
data set of real estate valuation are collected from Sindian Dist., New
Taipei City, Taiwan.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	transaction_date (float):
	The transaction date encoded as a floating point value. For
instance, 2013.250 is March 2013 and 2013.500 is June March

	house_age (float):
	The age of the house

	mrt_distance (float):
	Distance to the nearest MRT station

	n_stores (int):
	Number of convenience stores

	lat (float):
	Latitude

	lng (float):
	Longitude

	Targets:
	
	house_price (float):
	House price of unit area

	Source:
	https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set

Examples

Load in the data set:

>>> dataset = NewTaipeiHousing()
>>> dataset.shape
(414, 7)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((414, 6), (414,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((323, 6), (323,), (91, 6), (91,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.parkinsons module

Parkinsons data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.parkinsons.Parkinsons(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This dataset is composed of a range of biomedical voice measurements from
42 people with early-stage Parkinson’s disease recruited to a six-month
trial of a telemonitoring device for remote symptom progression
monitoring. The recordings were automatically captured in the patient’s
homes.

Columns in the table contain subject number, subject age, subject gender,
time interval from baseline recruitment date, motor UPDRS, total UPDRS,
and 16 biomedical voice measures. Each row corresponds to one of 5,875
voice recording from these individuals. The main aim of the data is to
predict the motor and total UPDRS scores (‘motor_UPDRS’ and ‘total_UPDRS’)
from the 16 voice measures.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	subject# (int):
	Integer that uniquely identifies each subject

	age (int):
	Subject age

	sex (int):
	Binary feature. Subject sex, with 0 being male and 1 female

	test_time (float):
	Time since recruitment into the trial. The integer part is the
number of days since recruitment

	Jitter(%) (float):
	Measure of variation in fundamental frequency

	Jitter(Abs) (float):
	Measure of variation in fundamental frequency

	Jitter:RAP (float):
	Measure of variation in fundamental frequency

	Jitter:PPQ5 (float):
	Measure of variation in fundamental frequency

	Jitter:DDP (float):
	Measure of variation in fundamental frequency

	Shimmer (float):
	Measure of variation in amplitude

	Shimmer(dB) (float):
	Measure of variation in amplitude

	Shimmer:APQ3 (float):
	Measure of variation in amplitude

	Shimmer:APQ5 (float):
	Measure of variation in amplitude

	Shimmer:APQ11 (float):
	Measure of variation in amplitude

	Shimmer:DDA (float):
	Measure of variation in amplitude

	NHR (float):
	Measure of ratio of noise to tonal components in the voice

	HNR (float):
	Measure of ratio of noise to tonal components in the voice

	RPDE (float):
	A nonlinear dynamical complexity measure

	DFA (float):
	Signal fractal scaling exponent

	PPE (float):
	A nonlinear measure of fundamental frequency variation

	Targets:
	
	motor_UPDRS (float):
	Clinician’s motor UPDRS score, linearly interpolated

	total_UPDRS (float):
	Clinician’s total UPDRS score, linearly interpolated

	Source:
	https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

Examples

Load in the data set:

>>> dataset = Parkinsons()
>>> dataset.shape
(5875, 22)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((5875, 20), (5875, 2))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((4659, 20), (4659, 2), (1216, 20), (1216, 2))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.power_plant module

Power plant data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.power_plant.PowerPlant(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

The dataset contains 9568 data points collected from a Combined Cycle
Power Plant over 6 years (2006-2011), when the power plant was set to
work with full load. Features consist of hourly average ambient variables
Temperature (T), Ambient Pressure (AP), Relative Humidity (RH) and Exhaust
Vacuum (V) to predict the net hourly electrical energy output (EP) of the
plant.

A combined cycle power plant (CCPP) is composed of gas turbines (GT),
steam turbines (ST) and heat recovery steam generators. In a CCPP, the
electricity is generated by gas and steam turbines, which are combined in
one cycle, and is transferred from one turbine to another. While the
Vacuum is colected from and has effect on the Steam Turbine, he other
three of the ambient variables effect the GT performance.

For comparability with our baseline studies, and to allow 5x2 fold
statistical tests be carried out, we provide the data shuffled five times.
For each shuffling 2-fold CV is carried out and the resulting 10
measurements are used for statistical testing.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	AT (float):
	Hourly average temperature in Celsius, ranges from 1.81 to 37.11

	V (float):
	Hourly average exhaust vacuum in cm Hg, ranges from 25.36 to 81.56

	AP (float):
	Hourly average ambient pressure in millibar, ranges from 992.89
to 1033.30

	RH (float):
	Hourly average relative humidity in percent, ranges from 25.56
to 100.16

	Targets:
	
	PE (float):
	Net hourly electrical energy output in MW, ranges from 420.26
to 495.76

	Source:
	https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

Examples

Load in the data set:

>>> dataset = PowerPlant()
>>> dataset.shape
(9568, 5)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((9568, 4), (9568,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((7633, 4), (7633,), (1935, 4), (1935,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.protein module

Protein data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.protein.Protein(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This is a data set of Physicochemical Properties of Protein Tertiary
Structure. The data set is taken from CASP 5-9. There are 45730 decoys
and size varying from 0 to 21 armstrong.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	F1 (float):
	Total surface area

	F2 (float):
	Non polar exposed area

	F3 (float):
	Fractional area of exposed non polar residue

	F4 (float):
	Fractional area of exposed non polar part of residue

	F5 (float):
	Molecular mass weighted exposed area

	F6 (float):
	Average deviation from standard exposed area of residue

	F7 (float):
	Euclidean distance

	F8 (float):
	Secondary structure penalty

	F9 (float):
	Spacial Distribution constraints (N,K Value)

	Targets:
	
	RMSD (float):
	Size of the residue

	Source:
	https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure

Examples

Load in the data set:

>>> dataset = Protein()
>>> dataset.shape
(45730, 10)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((45730, 9), (45730,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((36580, 9), (36580,), (9150, 9), (9150,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.servo module

Servo data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.servo.Servo(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Data was from a simulation of a servo system.

Ross Quinlan:

This data was given to me by Karl Ulrich at MIT in 1986. I didn’t record
his description at the time, but here’s his subsequent (1992) recollection:

“I seem to remember that the data was from a simulation of a servo system
involving a servo amplifier, a motor, a lead screw/nut, and a sliding
carriage of some sort. It may have been on of the translational axes of a
robot on the 9th floor of the AI lab. In any case, the output value is
almost certainly a rise time, or the time required for the system to
respond to a step change in a position set point.”

(Quinlan, ML’93)

“This is an interesting collection of data provided by Karl Ulrich. It
covers an extremely non-linear phenomenon - predicting the rise time of a
servomechanism in terms of two (continuous) gain settings and two
(discrete) choices of mechanical linkages.”

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	motor (int):
	Motor, ranges from 0 to 4 inclusive

	screw (int):
	Screw, ranges from 0 to 4 inclusive

	pgain (int):
	PGain, ranges from 3 to 6 inclusive

	vgain (int):
	VGain, ranges from 1 to 5 inclusive

	Targets:
	
	class (float):
	Class values, ranges from 0.13 to 7.10 inclusive

	Source:
	https://archive.ics.uci.edu/ml/datasets/Servo

Examples

Load in the data set:

>>> dataset = Servo()
>>> dataset.shape
(167, 5)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((167, 4), (167,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((131, 4), (131,), (36, 4), (36,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.solar_flare module

Solar flare data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.solar_flare.SolarFlare(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Each class attribute counts the number of solar flares of a certain class
that occur in a 24 hour period.

The database contains 3 potential classes, one for the number of times a
certain type of solar flare occured in a 24 hour period.

Each instance represents captured features for 1 active region on the sun.

The data are divided into two sections. The second section (flare.data2)
has had much more error correction applied to the it, and has consequently
been treated as more reliable.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	class (int):
	Code for class (modified Zurich class). Ranges from 0 to 6
inclusive

	spot_size (int):
	Code for largest spot size. Ranges from 0 to 5 inclusive

	spot_distr (int):
	Code for spot distribution. Ranges from 0 to 3 inclusive

	activity (int):
	Binary feature indicating 1 = reduced and 2 = unchanged

	evolution (int):
	0 = decay, 1 = no growth and 2 = growth

	flare_activity (int):
	Previous 24 hour flare activity code, where 0 = nothing as big
as an M1, 1 = one M1 and 2 = more activity than one M1

	is_complex (int):
	Binary feature indicating historically complex

	became_complex (int):
	Binary feature indicating whether the region became historically
complex on this pass across the sun’s disk

	large (int):
	Binary feature, indicating whether area is large

	large_spot (int):
	Binary feature, indicating whether the area of the largest
spot is greater than 5

	Targets:
	
	C-class (int):
	C-class flares production by this region in the following 24
hours (common flares)

	M-class (int):
	M-class flares production by this region in the following 24
hours (common flares)

	X-class (int):
	X-class flares production by this region in the following 24
hours (common flares)

	Source:
	https://archive.ics.uci.edu/ml/datasets/Solar+Flare

Examples

Load in the data set:

>>> dataset = SolarFlare()
>>> dataset.shape
(1066, 13)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((1066, 10), (1066, 3))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((837, 10), (837, 3), (229, 10), (229, 3))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.space_shuttle module

Space shuttle data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.space_shuttle.SpaceShuttle(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

The motivation for collecting this database was the explosion of the USA
Space Shuttle Challenger on 28 January, 1986. An investigation ensued into
the reliability of the shuttle’s propulsion system. The explosion was
eventually traced to the failure of one of the three field joints on one
of the two solid booster rockets. Each of these six field joints includes
two O-rings, designated as primary and secondary, which fail when
phenomena called erosion and blowby both occur.

The night before the launch a decision had to be made regarding launch
safety. The discussion among engineers and managers leading to this
decision included concern that the probability of failure of the O-rings
depended on the temperature t at launch, which was forecase to be 31
degrees F. There are strong engineering reasons based on the composition
of O-rings to support the judgment that failure probability may rise
monotonically as temperature drops. One other variable, the pressure s
at which safety testing for field join leaks was performed, was available,
but its relevance to the failure process was unclear.

Draper’s paper includes a menacing figure graphing the number of field
joints experiencing stress vs. liftoff temperature for the 23 shuttle
flights previous to the Challenger disaster. No previous liftoff
temperature was under 53 degrees F. Although tremendous extrapolation must
be done from the given data to assess risk at 31 degrees F, it is obvious
even to the layman “to foresee the unacceptably high risk created by
launching at 31 degrees F.” For more information, see Draper (1993) or the
other previous analyses.

The task is to predict the number of O-rings that will experience thermal
distress for a given flight when the launch temperature is below freezing.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	idx (int):
	Temporal order of flight

	temp (int):
	Launch temperature in Fahrenheit

	pres (int):
	Leak-check pressure in psi

	n_risky_rings (int):
	Number of O-rings at risk on a given flight

	Targets:
	
	n_distressed_rings (int):
	Number of O-rings experiencing thermal distress

	Source:
	https://archive.ics.uci.edu/ml/datasets/Challenger+USA+Space+Shuttle+O-Ring

Examples

Load in the data set:

>>> dataset = SpaceShuttle()
>>> dataset.shape
(23, 5)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((23, 4), (23,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((20, 4), (20,), (3, 4), (3,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.stocks module

Stocks data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.stocks.Stocks(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

There are three disadvantages of weighted scoring stock selection models.
First, they cannot identify the relations between weights of stock-picking
concepts and performances of portfolios. Second, they cannot systematically
discover the optimal combination for weights of concepts to optimize the
performances. Third, they are unable to meet various investors’
preferences.

This study aims to more efficiently construct weighted scoring stock
selection models to overcome these disadvantages. Since the weights of
stock-picking concepts in a weighted scoring stock selection model can be
regarded as components in a mixture, we used the simplex centroid mixture
design to obtain the experimental sets of weights. These sets of weights
are simulated with US stock market historical data to obtain their
performances. Performance prediction models were built with the simulated
performance data set and artificial neural networks.

Furthermore, the optimization models to reflect investors’ preferences
were built up, and the performance prediction models were employed as the
kernel of the optimization models so that the optimal solutions can now be
solved with optimization techniques. The empirical values of the
performances of the optimal weighting combinations generated by the
optimization models showed that they can meet various investors’
preferences and outperform those of S&P’s 500 not only during the
training period but also during the testing period.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	bp (float):
	Large B/P

	roe (float):
	Large ROE

	sp (float):
	Large S/P

	return_rate (float):
	Large return rate in the last quarter

	market_value (float):
	Large market value

	small_risk (float):
	Small systematic risk

	orig_annual_return (float):
	Annual return

	orig_excess_return (float):
	Excess return

	orig_risk (float):
	Systematic risk

	orig_total_risk (float):
	Total risk

	orig_abs_win_rate (float):
	Absolute win rate

	orig_rel_win_rate (float):
	Relative win rate

	Targets:
	
	annual_return (float):
	Annual return

	excess_return (float):
	Excess return

	risk (float):
	Systematic risk

	total_risk (float):
	Total risk

	abs_win_rate (float):
	Absolute win rate

	rel_win_rate (float):
	Relative win rate

	Source:
	https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance

Examples

Load in the data set:

>>> dataset = Stocks()
>>> dataset.shape
(252, 19)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((252, 12), (252, 6))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((197, 12), (197, 6), (55, 12), (55, 6))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.superconductivity module

Superconductivity data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.superconductivity.Superconductivity(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

This dataset contains data on 21,263 superconductors and their relevant
features. The goal here is to predict the critical temperature based on
the features extracted.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	number_of_elements (int)

	mean_atomic_mass (float)

	wtd_mean_atomic_mass (float)

	gmean_atomic_mass (float)

	wtd_gmean_atomic_mass (float)

	entropy_atomic_mass (float)

	wtd_entropy_atomic_mass (float)

	range_atomic_mass (float)

	wtd_range_atomic_mass (float)

	std_atomic_mass (float)

	wtd_std_atomic_mass (float)

	mean_fie (float)

	wtd_mean_fie (float)

	gmean_fie (float)

	wtd_gmean_fie (float)

	entropy_fie (float)

	wtd_entropy_fie (float)

	range_fie (float)

	wtd_range_fie (float)

	std_fie (float)

	wtd_std_fie (float)

	mean_atomic_radius (float)

	wtd_mean_atomic_radius (float)

	gmean_atomic_radius (float)

	wtd_gmean_atomic_radius (float)

	entropy_atomic_radius (float)

	wtd_entropy_atomic_radius (float)

	range_atomic_radius (float)

	wtd_range_atomic_radius (float)

	std_atomic_radius (float)

	wtd_std_atomic_radius (float)

	mean_Density (float)

	wtd_mean_Density (float)

	gmean_Density (float)

	wtd_gmean_Density (float)

	entropy_Density (float)

	wtd_entropy_Density (float)

	range_Density (float)

	wtd_range_Density (float)

	std_Density (float)

	wtd_std_Density (float)

	mean_ElectronAffinity (float)

	wtd_mean_ElectronAffinity (float)

	gmean_ElectronAffinity (float)

	wtd_gmean_ElectronAffinity (float)

	entropy_ElectronAffinity (float)

	wtd_entropy_ElectronAffinity (float)

	range_ElectronAffinity (float)

	wtd_range_ElectronAffinity (float)

	std_ElectronAffinity (float)

	wtd_std_ElectronAffinity (float)

	mean_FusionHeat (float)

	wtd_mean_FusionHeat (float)

	gmean_FusionHeat (float)

	wtd_gmean_FusionHeat (float)

	entropy_FusionHeat (float)

	wtd_entropy_FusionHeat (float)

	range_FusionHeat (float)

	wtd_range_FusionHeat (float)

	std_FusionHeat (float)

	wtd_std_FusionHeat (float)

	mean_ThermalConductivity (float)

	wtd_mean_ThermalConductivity (float)

	gmean_ThermalConductivity (float)

	wtd_gmean_ThermalConductivity (float)

	entropy_ThermalConductivity (float)

	wtd_entropy_ThermalConductivity (float)

	range_ThermalConductivity (float)

	wtd_range_ThermalConductivity (float)

	std_ThermalConductivity (float)

	wtd_std_ThermalConductivity (float)

	mean_Valence (float)

	wtd_mean_Valence (float)

	gmean_Valence (float)

	wtd_gmean_Valence (float)

	entropy_Valence (float)

	wtd_entropy_Valence (float)

	range_Valence (float)

	wtd_range_Valence (float)

	std_Valence (float)

	wtd_std_Valence (float)

	Targets:
	
	critical_temp (float)

	Source:
	https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data

Examples

Load in the data set:

>>> dataset = Superconductivity()
>>> dataset.shape
(21263, 82)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((21263, 81), (21263,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((17004, 81), (17004,), (4259, 81), (4259,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.tehran_housing module

Tehran housing data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.tehran_housing.TehranHousing(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Data set includes construction cost, sale prices, project variables, and
economic variables corresponding to real estate single-family residential
apartments in Tehran, Iran.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	start_year (int):
	Start year in the Persian calendar

	start_quarter (int)
	Start quarter in the Persian calendar

	completion_year (int)
	Completion year in the Persian calendar

	completion_quarter (int)
	Completion quarter in the Persian calendar

	V-1..V-8 (floats):
	Project physical and financial variables

	V-11-1..29-1 (floats):
	Economic variables and indices in time, lag 1

	V-11-2..29-2 (floats):
	Economic variables and indices in time, lag 2

	V-11-3..29-3 (floats):
	Economic variables and indices in time, lag 3

	V-11-4..29-4 (floats):
	Economic variables and indices in time, lag 4

	V-11-5..29-5 (floats):
	Economic variables and indices in time, lag 5

	Targets:
	construction_cost (float)
sale_price (float)

	Source:
	https://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set

Examples

Load in the data set:

>>> dataset = TehranHousing()
>>> dataset.shape
(371, 109)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((371, 107), (371, 2))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((288, 107), (288, 2), (83, 107), (83, 2))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

doubt.datasets.yacht module

Yacht data set.

This data set is from the UCI data set archive, with the description being
the original description verbatim. Some feature names may have been altered,
based on the description.

	
class doubt.datasets.yacht.Yacht(cache: Optional[str] = '.dataset_cache')

	Bases: doubt.datasets._dataset.BaseDataset

Prediction of residuary resistance of sailing yachts at the initial design
stage is of a great value for evaluating the ship’s performance and for
estimating the required propulsive power. Essential inputs include the
basic hull dimensions and the boat velocity.

The Delft data set comprises 308 full-scale experiments, which were
performed at the Delft Ship Hydromechanics Laboratory for that purpose.

These experiments include 22 different hull forms, derived from a parent
form closely related to the “Standfast 43” designed by Frans Maas.

	Parameters

	cache (str or None, optional) – The name of the cache. It will be saved to cache in the
current working directory. If None then no cache will be saved.
Defaults to ‘.dataset_cache’.

	
cache

	The name of the cache.

	Type

	str or None

	
shape

	Dimensions of the data set

	Type

	tuple of integers

	
columns

	List of column names in the data set

	Type

	list of strings

	Features:
	
	pos (float):
	Longitudinal position of the center of buoyancy, adimensional

	prismatic (float):
	Prismatic coefficient, adimensional

	displacement (float):
	Length-displacement ratio, adimensional

	beam_draught (float):
	Beam-draught ratio, adimensional

	length_beam (float):
	Length-beam ratio, adimensional

	froude_no (float):
	Froude number, adimensional

	Targets:
	
	resistance (float):
	Residuary resistance per unit weight of displacement, adimensional

	Source:
	https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

Examples

Load in the data set:

>>> dataset = Yacht()
>>> dataset.shape
(308, 7)

Split the data set into features and targets, as NumPy arrays:

>>> X, y = dataset.split()
>>> X.shape, y.shape
((308, 6), (308,))

Perform a train/test split, also outputting NumPy arrays:

>>> train_test_split = dataset.split(test_size=0.2, random_seed=42)
>>> X_train, X_test, y_train, y_test = train_test_split
>>> X_train.shape, y_train.shape, X_test.shape, y_test.shape
((235, 6), (235,), (73, 6), (73,))

Output the underlying Pandas DataFrame:

>>> df = dataset.to_pandas()
>>> type(df)
<class 'pandas.core.frame.DataFrame'>

Module contents

doubt.models package

Subpackages

	doubt.models.boot package
	Submodules

	doubt.models.boot.boot module

	Module contents

	doubt.models.glm package
	Submodules

	doubt.models.glm.quantile_loss module

	doubt.models.glm.quantile_regressor module

	Module contents

	doubt.models.tree package
	Submodules

	doubt.models.tree.forest module

	doubt.models.tree.tree module

	doubt.models.tree.utils module

	Module contents

Module contents

doubt.models.boot package

Submodules

doubt.models.boot.boot module

Bootstrap wrapper for datasets and models

	
class doubt.models.boot.boot.Boot(input: object, random_seed: Optional[float] = None)

	Bases: object

Bootstrap wrapper for datasets and models.

Datasets can be any sequence of numeric input, from which bootstrapped
statistics can be calculated, with confidence intervals included.

The models can be any model that is either callable or equipped with
a predict method, such as all the models in scikit-learn, pytorch
and tensorflow, and the bootstrapped model can then produce predictions
with prediction intervals.

The bootstrapped prediction intervals are computed using the an extension
of method from [2] which also takes validation error into account. To
remedy this, the .632+ bootstrap estimate from [1] has been used. Read
more in [3].

	Parameters

	
	input (float array or model) – Either a dataset to calculate bootstrapped statistics on, or an
model for which bootstrapped predictions will be computed.

	random_seed (float or None) – The random seed used for bootstrapping. If set to None then no
seed will be set. Defaults to None.

Examples

Compute the bootstrap distribution of the mean, with a 95% confidence
interval:

>>> from doubt.datasets import FishToxicity
>>> X, y = FishToxicity().split()
>>> boot = Boot(y, random_seed=42)
>>> boot.compute_statistic(np.mean)
(4.064430616740088, array([3.97621225, 4.16582087]))

Alternatively, we can output the whole bootstrap distribution:

>>> boot.compute_statistic(np.mean, n_boots=3, return_all=True)
(4.064430616740088, array([4.05705947, 4.06197577, 4.05728414]))

Wrap a scikit-learn model and get prediction intervals:

>>> from sklearn.linear_model import LinearRegression
>>> from doubt.datasets import PowerPlant
>>> X, y = PowerPlant().split()
>>> linreg = Boot(LinearRegression(), random_seed=42)
>>> linreg = linreg.fit(X, y)
>>> linreg.predict([10, 30, 1000, 50], uncertainty=0.05)
(481.99688920651676, array([473.50425407, 490.14061895]))

	Sources:
	
	[1]: Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements
	of statistical learning (Vol. 1, No. 10). New York: Springer
series in statistics.

	[2]: Kumar, S., & Srivistava, A. N. (2012). Bootstrap prediction
	intervals in non-parametric regression with applications to
anomaly detection.

[3]: https://saattrupdan.github.io/2020-03-01-bootstrap-prediction/

	
doubt.models.boot.boot.compute_statistic(self, statistic: Callable[[Sequence[Union[float, int]]], float], n_boots: Optional[int] = None, uncertainty: float = 0.05, quantiles: Optional[Sequence[float]] = None, return_all: bool = False) → Union[float, Tuple[float, numpy.ndarray]]

	Compute bootstrapped statistic.

	Parameters

	
	statistic (numeric array -> float) – The statistic to be computed on bootstrapped samples.

	n_boots (int or None) – The number of resamples to bootstrap. If None then it is set
to the square root of the data set. Defaults to None

	uncertainty (float) – The uncertainty used to compute the confidence interval
of the bootstrapped statistic. Not used if return_all is
set to True or if quantiles is not None. Defaults to 0.05.

	quantiles (sequence of floats or None, optional) – List of quantiles to output, as an alternative to the
uncertainty argument, and will not be used if that argument
is set. If None then uncertainty is used. Defaults to None.

	return_all (bool) – Whether all bootstrapped statistics should be returned instead
of the confidence interval. Defaults to False.

	Returns

	The statistic, and if uncertainty is set then also
the confidence interval, or if quantiles is set then also the
specified quantiles, or if return_all is set then also all of the
bootstrapped statistics.

	Return type

	a float or a pair of a float and an array of floats

	
doubt.models.boot.boot.fit(self, X: Sequence[float], y: Sequence[float], n_boots: Optional[int] = None)

	Fits the model to the data.

	Parameters

	
	X (float array) – The array containing the data set, either of shape (f,)
or (n, f), with n being the number of samples and f being
the number of features.

	y (float array) – The array containing the target values, of shape (n,)

	n_boots (int or None) – The number of resamples to bootstrap. If None then it is set
to the square root of the data set. Defaults to None

	
doubt.models.boot.boot.predict(self, X: Sequence[float], n_boots: Optional[int] = None, uncertainty: Optional[float] = None, quantiles: Optional[Sequence[float]] = None) → Tuple[Union[float, numpy.ndarray], numpy.ndarray]

	Compute bootstrapped predictions.

	Parameters

	
	X (float array) – The array containing the data set, either of shape (f,)
or (n, f), with n being the number of samples and f being
the number of features.

	n_boots (int or None, optional) – The number of resamples to bootstrap. If None then it is set
to the square root of the data set. Defaults to None

	uncertainty (float or None, optional) – The uncertainty used to compute the prediction interval
of the bootstrapped prediction. If None then no prediction
intervals are returned. Defaults to None.

	quantiles (sequence of floats or None, optional) – List of quantiles to output, as an alternative to the
uncertainty argument, and will not be used if that argument
is set. If None then uncertainty is used. Defaults to None.

	Returns

	The bootstrapped predictions, and the confidence intervals if
uncertainty is not None, or the specified quantiles if
quantiles is not None.

	Return type

	float array or pair of float arrays

Module contents

doubt.models.glm package

Submodules

doubt.models.glm.quantile_loss module

Implementation of the quantile loss function

	
doubt.models.glm.quantile_loss.quantile_loss(predictions: Sequence[float], targets: Sequence[float], quantile: float) → float

	Quantile loss function.

	Parameters

	
	predictions (sequence of floats) – Model predictions, of shape [n_samples,].

	targets (sequence of floats) – Target values, of shape [n_samples,].

	quantile (float) – The quantile we are seeking. Must be between 0 and 1.

	Returns

	The quantile loss.

	Return type

	float

	
doubt.models.glm.quantile_loss.smooth_quantile_loss(predictions: Sequence[float], targets: Sequence[float], quantile: float, alpha: float = 0.4) → float

	The smooth quantile loss function from [1].

	Parameters

	
	predictions (sequence of floats) – Model predictions, of shape [n_samples,].

	targets (sequence of floats) – Target values, of shape [n_samples,].

	quantile (float) – The quantile we are seeking. Must be between 0 and 1.

	alpha (float, optional) – Smoothing parameter. Defaults to 0.4.

	Returns

	The smooth quantile loss.

	Return type

	float

	Sources:
	
	[1]: Songfeng Zheng (2011). Gradient Descent Algorithms for
	Quantile Regression With Smooth Approximation. International
Journal of Machine Learning and Cybernetics.

doubt.models.glm.quantile_regressor module

Quantile regression for generalised linear models

	
class doubt.models.glm.quantile_regressor.QuantileRegressor(model: Union[sklearn.linear_model._base.LinearRegression, sklearn.linear_model._glm.glm.GeneralizedLinearRegressor], max_iter: Optional[int] = None, uncertainty: float = 0.05, quantiles: Optional[Sequence[float]] = None, alpha: float = 0.4)

	Bases: doubt.models._model.BaseModel

Quantile regression for generalised linear models.

This uses BFGS optimisation of the smooth quantile loss from [1].

	Parameters

	
	max_iter (int) – The maximal number of iterations to train the model for. Defaults
to 10,000.

	uncertainty (float) – The uncertainty in the prediction intervals. Must be between 0
and 1. Defaults to 0.05.

	quantiles (sequence of floats or None, optional) – List of quantiles to output, as an alternative to the
uncertainty argument, and will not be used if that argument
is set. If None then uncertainty is used. Defaults to None.

	alpha (float, optional) – Smoothing parameter. Defaults to 0.4.

Examples

Fitting and predicting follows scikit-learn syntax:

>>> from doubt.datasets import Concrete
>>> from sklearn.linear_model import PoissonRegressor
>>> X, y = Concrete().split(random_seed=42)
>>> model = QuantileRegressor(PoissonRegressor(max_iter=10_000),
... uncertainty=0.05)
>>> model.fit(X, y).predict(X)[0].shape
(1030,)
>>> x = [500, 0, 0, 100, 2, 1000, 500, 20]
>>> pred, interval = model.predict(x)
>>> pred, interval
(78.50224243713622, array([19.27889844, 172.71408196]))

	Sources:
	
	[1]: Songfeng Zheng (2011). Gradient Descent Algorithms for
	Quantile Regression With Smooth Approximation. International
Journal of Machine Learning and Cybernetics.

	
fit(X: Sequence[Sequence[float]], y: Sequence[float], random_seed: Optional[int] = None)

	Fit the model.

	Parameters

	
	X (float matrix) – The array containing the data set, either of shape (n,) or
(n, f), with n being the number of samples and f being the
number of features.

	y (float array) – The target array, of shape (n,).

	
predict(X: Sequence[Sequence[float]]) → Tuple[Union[float, numpy.ndarray], numpy.ndarray]

	Compute model predictions.

	Parameters

	X (float matrix) – The array containing the data set, either of shape (n,) or
(n, f), with n being the number of samples and f being the
number of features.

	Returns

	The predictions, of shape (n,), and the prediction intervals,
of shape (n, 2).

	Return type

	pair of float arrays

	
score(X: Sequence[float], y: Sequence[float]) → float

	Compute either the R^2 value or the negative pinball loss.

If uncertainty is not set in the constructor then the R^2 value will
be returned, and otherwise the mean of the two negative pinball losses
corresponding to the two quantiles will be returned.

The pinball loss is computed as quantile * (target - prediction) if
target >= prediction, and (1 - quantile)(prediction - target)
otherwise.

	Parameters

	
	X (float array) – The array containing the data set, either of shape (n,) or
(n, f), with n being the number of samples and f being the
number of features.

	y (float array) – The target array, of shape (n,).

	Returns

	The negative pinball loss.

	Return type

	float

Module contents

doubt.models.tree package

Submodules

doubt.models.tree.forest module

Quantile regression forests

	
class doubt.models.tree.forest.QuantileRegressionForest(n_estimators: int = 100, criterion: str = 'mse', splitter: str = 'best', max_features: Optional[Union[int, float, str]] = None, max_depth: Optional[int] = None, min_samples_split: Union[int, float] = 2, min_samples_leaf: Union[int, float] = 5, min_weight_fraction_leaf: float = 0.0, max_leaf_nodes: Optional[int] = None, n_jobs: int = - 1, random_seed: Optional[int] = None, verbose: bool = False)

	Bases: doubt.models._model.BaseModel

A random forest for regression which can output quantiles as well.

	Parameters

	
	n_estimators (int, optional) – The number of trees in the forest. Defaults to 100.

	criterion (string, optional) – The function to measure the quality of a split. Supported criteria
are ‘mse’ for the mean squared error, which is equal to variance
reduction as feature selection criterion, and ‘mae’ for the mean
absolute error. Defaults to ‘mse’.

	splitter (string, optional) – The strategy used to choose the split at each node. Supported
strategies are ‘best’ to choose the best split and ‘random’ to
choose the best random split. Defaults to ‘best’.

	max_features (int, float, string or None, optional) – The number of features to consider when looking for the best split:

	If int, then consider max_features features at each split.

	If float, then max_features is a percentage and
int(max_features * n_features) features are considered at
each split.

	If ‘auto’, then max_features=n_features.

	If ‘sqrt’, then max_features=sqrt(n_features).

	If ‘log2’, then max_features=log2(n_features).

	If None, then max_features=n_features.

Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires
to effectively inspect more than max_features features.
Defaults to None.

	max_depth (int or None, optional) – The maximum depth of the tree. If None, then nodes are expanded
until all leaves are pure or until all leaves contain less than
min_samples_split samples. Defaults to None.

	min_samples_split (int or float, optional) – The minimum number of samples required to split an internal node:

	If int, then consider min_samples_split as the minimum number.

	If float, then min_samples_split is a percentage and
ceil(min_samples_split * n_samples) are the minimum number of
samples for each split. Defaults to 2.

	min_samples_leaf (int or float, optional) – The minimum number of samples required to be at a leaf node:

	If int, then consider min_samples_leaf as the minimum number.

	If float, then min_samples_leaf is a percentage and
ceil(min_samples_leaf * n_samples) are the minimum number of
samples for each node. Defaults to 5.

	min_weight_fraction_leaf (float, optional) – The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided. Defaults to 0.0.

	max_leaf_nodes (int or None, optional) – Grow a tree with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes. Defaults to None.

	n_jobs (int, optional) – The number of CPU cores used in fitting and predicting. If -1 then
all available CPU cores will be used. Defaults to -1.

	random_seed (int, RandomState instance or None, optional) – If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the
RandomState instance used by np.random. Defaults to None.

	verbose (bool, optional) – Whether extra output should be printed during training and
inference. Defaults to False.

Examples

Fitting and predicting follows scikit-learn syntax:

>>> from doubt.datasets import Concrete
>>> X, y = Concrete().split()
>>> forest = QuantileRegressionForest(random_seed=42,
... max_leaf_nodes=8)
>>> forest.fit(X, y).predict(X).shape
(1030,)
>>> preds = forest.predict(np.ones(8))
>>> 16 < preds < 17
True

Instead of only returning the prediction, we can also return a
prediction interval:

>>> preds, interval = forest.predict(np.ones(8), uncertainty=0.25)
>>> interval[0] < preds < interval[1]
True

	
fit(X, y, verbose: Optional[bool] = None)

	Fit decision trees in parallel.

	Parameters

	
	X (array-like or sparse matrix) – The input samples, of shape [n_samples, n_features].
Internally, it will be converted to dtype=np.float32 and
if a sparse matrix is provided to a sparse csr_matrix.

	y (array-like) – The target values (class labels) as integers or strings, of
shape [n_samples] or [n_samples, n_outputs].

	verbose (bool or None, optional) – Whether extra output should be printed during training. If None
then the initialised value of the verbose parameter will be
used. Defaults to None.

	
predict(X: Sequence[Union[float, int]], uncertainty: Optional[float] = None, quantiles: Optional[Sequence[float]] = None, verbose: Optional[bool] = None) → Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]

	Predict regression value for X.

	Parameters

	
	X (array-like or sparse matrix) – The input samples, of shape [n_samples, n_features].
Internally, it will be converted to dtype=np.float32 and
if a sparse matrix is provided to a sparse csr_matrix.

	uncertainty (float or None, optional) – Value ranging from 0 to 1. If None then no prediction intervals
will be returned. Defaults to None.

	quantiles (sequence of floats or None, optional) – List of quantiles to output, as an alternative to the
uncertainty argument, and will not be used if that argument
is set. If None then uncertainty is used. Defaults to None.

	verbose (bool or None, optional) – Whether extra output should be printed during inference. If
None then the initialised value of the verbose parameter will
be used. Defaults to None.

	Returns

	Either array with predictions, of shape [n_samples,], or a pair
of arrays with the first one being the predictions and the
second one being the desired quantiles/intervals, of shape
[2, n_samples] if uncertainty is not None, and
[n_quantiles, n_samples] if quantiles is not None.

	Return type

	Array or pair of arrays

doubt.models.tree.tree module

Quantile regression trees

	
class doubt.models.tree.tree.BaseTreeQuantileRegressor(*, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, min_impurity_decrease, min_impurity_split, class_weight=None, ccp_alpha=0.0)

	Bases: sklearn.tree._classes.BaseDecisionTree

	
fit(X: Sequence[Union[float, int]], y: Sequence[Union[float, int]], sample_weight: Optional[Sequence[Union[float, int]]] = None, check_input: bool = True, X_idx_sorted: Optional[Sequence[Union[float, int]]] = None)

	Build a decision tree classifier from the training set (X, y).

	Parameters

	
	X (array-like or sparse matrix) – The training input samples, of shape [n_samples, n_features].
Internally, it will be converted to dtype=np.float32 and
if a sparse matrix is provided to a sparse csc_matrix.

	y (array-like) – The target values (class labels) as integers or strings, of
shape [n_samples] or [n_samples, n_outputs].

	sample_weight (array-like or None, optional) – Sample weights of shape = [n_samples]. If None, then samples
are equally weighted. Splits that would create child nodes
with net zero or negative weight are ignored while searching
for a split in each node. Splits are also ignored if they
would result in any single class carrying a negative weight
in either child node. Defaults to None.

	check_input (boolean, optional) – Allow to bypass several input checking. Don’t use this
parameter unless you know what you do. Defaults to True.

	X_idx_sorted (array-like or None, optional) – The indexes of the sorted training input samples, of shape
[n_samples, n_features]. If many tree are grown on the same
dataset, this allows the ordering to be cached between trees.
If None, the data will be sorted here. Don’t use this
parameter unless you know what to do. Defaults to None.

	
predict(X: Sequence[Union[float, int]], uncertainty: Optional[float] = None, quantiles: Optional[Sequence[float]] = None, check_input: bool = True) → Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]

	Predict regression value for X.

	Parameters

	
	X (array-like or sparse matrix) – The input samples, of shape [n_samples, n_features].
Internally, it will be converted to dtype=np.float32 and
if a sparse matrix is provided to a sparse csr_matrix.

	uncertainty (float or None, optional) – Value ranging from 0 to 1. If None then no prediction intervals
will be returned. Defaults to None.

	quantiles (sequence of floats or None, optional) – List of quantiles to output, as an alternative to the
uncertainty argument, and will not be used if that argument
is set. If None then uncertainty is used. Defaults to None.

	check_input (boolean, optional) – Allow to bypass several input checking. Don’t use this
parameter unless you know what you do. Defaults to True.

	Returns

	Either array with predictions, of shape [n_samples,], or a pair
of arrays with the first one being the predictions and the
second one being the desired quantiles/intervals, of shape
[n_samples, 2] if uncertainty is not None, and
[n_samples, n_quantiles] if quantiles is not None.

	Return type

	Array or pair of arrays

	
class doubt.models.tree.tree.QuantileRegressionTree(criterion: str = 'mse', splitter: str = 'best', max_features: Optional[Union[int, float, str]] = None, max_depth: Optional[int] = None, min_samples_split: Union[int, float] = 2, min_samples_leaf: Union[int, float] = 1, min_weight_fraction_leaf: float = 0.0, max_leaf_nodes: Optional[int] = None, random_seed: Optional[Union[int, numpy.random.mtrand.RandomState]] = None)

	Bases: sklearn.tree._classes.DecisionTreeRegressor, doubt.models.tree.tree.BaseTreeQuantileRegressor

A decision tree regressor that provides quantile estimates.

	Parameters

	
	criterion (string, optional) – The function to measure the quality of a split. Supported criteria
are ‘mse’ for the mean squared error, which is equal to variance
reduction as feature selection criterion, and ‘mae’ for the mean
absolute error. Defaults to ‘mse’.

	splitter (string, optional) – The strategy used to choose the split at each node. Supported
strategies are ‘best’ to choose the best split and ‘random’ to
choose the best random split. Defaults to ‘best’.

	max_features (int, float, string or None, optional) – The number of features to consider when looking for the best split:
- If int, then consider max_features features at each split.
- If float, then max_features is a percentage and

int(max_features * n_features) features are considered at each
split.

	If ‘auto’, then max_features=n_features.

	If ‘sqrt’, then max_features=sqrt(n_features).

	If ‘log2’, then max_features=log2(n_features).

	If None, then max_features=n_features.

Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires
to effectively inspect more than max_features features.
Defaults to None.

	max_depth (int or None, optional) – The maximum depth of the tree. If None, then nodes are expanded
until all leaves are pure or until all leaves contain less than
min_samples_split samples. Defaults to None.

	min_samples_split (int or float, optional) – The minimum number of samples required to split an internal node:
- If int, then consider min_samples_split as the minimum number.
- If float, then min_samples_split is a percentage and

ceil(min_samples_split * n_samples) are the minimum
number of samples for each split. Defaults to 2.

	min_samples_leaf (int or float, optional) – The minimum number of samples required to be at a leaf node:
- If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a percentage and

ceil(min_samples_leaf * n_samples) are the minimum
number of samples for each node. Defaults to 1.

	min_weight_fraction_leaf (float, optional) – The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided. Defaults to 0.0.

	max_leaf_nodes (int or None, optional) – Grow a tree with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes. Defaults to None.

	random_seed (int, RandomState instance or None, optional) – If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the
RandomState instance used by np.random. Defaults to None.

	
feature_importances_

	The feature importances, of shape = [n_features]. The higher, the
more important the feature. The importance of a feature is
computed as the (normalized) total reduction of the criterion
brought by that feature. It is also known as the Gini importance.

	Type

	array

	
max_features_

	The inferred value of max_features.

	Type

	int

	
n_features_

	The number of features when fit is performed.

	Type

	int

	
n_outputs_

	The number of outputs when fit is performed.

	Type

	int

	
tree_

	The underlying Tree object.

	Type

	Tree object

	
y_train_

	Train target values.

	Type

	array-like

	
y_train_leaves_

	Cache the leaf nodes that each training sample falls into.
y_train_leaves_[i] is the leaf that y_train[i] ends up at.

	Type

	array-like

doubt.models.tree.utils module

Utility functions used in tree models

	
doubt.models.tree.utils.weighted_percentile(arr: Sequence[Union[float, int]], quantile: float, weights: Optional[Sequence[Union[float, int]]] = None, sorter: Optional[Sequence[Union[float, int]]] = None)

	Returns the weighted percentile of an array.

See [1] for an explanation of this concept.

	Parameters

	
	arr (array-like) – Samples at which the quantile should be computed, of
shape [n_samples,].

	quantile (float) – Quantile, between 0.0 and 1.0.

	weights (array-like, optional) – The weights, of shape = (n_samples,). Here weights[i] is the
weight given to point a[i] while computing the quantile. If
weights[i] is zero, a[i] is simply ignored during the percentile
computation. If None then uniform weights will be used. Defaults to
None.

	sorter (array-like, optional) – Array of shape [n_samples,], indicating the indices sorting arr.
Thus, if provided, we assume that arr[sorter] is sorted. If None
then arr will be sorted. Defaults to None.

	Returns

	
	float
	Weighted percentile of arr at quantile.

	Return type

	percentile

	Raises

	ValueError – If quantile is not between 0.0 and 1.0, or if arr and weights
 are of different lengths.

	Sources:
	[1]: https://en.wikipedia.org/wiki/Percentile#The_weighted_percentile_method

Module contents

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 doubt	

 	
 	
 doubt.datasets	

 	
 	
 doubt.datasets.airfoil	

 	
 	
 doubt.datasets.bike_sharing_daily	

 	
 	
 doubt.datasets.bike_sharing_hourly	

 	
 	
 doubt.datasets.blog	

 	
 	
 doubt.datasets.concrete	

 	
 	
 doubt.datasets.cpu	

 	
 	
 doubt.datasets.facebook_comments	

 	
 	
 doubt.datasets.facebook_metrics	

 	
 	
 doubt.datasets.fish_bioconcentration	

 	
 	
 doubt.datasets.fish_toxicity	

 	
 	
 doubt.datasets.forest_fire	

 	
 	
 doubt.datasets.gas_turbine	

 	
 	
 doubt.datasets.nanotube	

 	
 	
 doubt.datasets.new_taipei_housing	

 	
 	
 doubt.datasets.parkinsons	

 	
 	
 doubt.datasets.power_plant	

 	
 	
 doubt.datasets.protein	

 	
 	
 doubt.datasets.servo	

 	
 	
 doubt.datasets.solar_flare	

 	
 	
 doubt.datasets.space_shuttle	

 	
 	
 doubt.datasets.stocks	

 	
 	
 doubt.datasets.superconductivity	

 	
 	
 doubt.datasets.tehran_housing	

 	
 	
 doubt.datasets.yacht	

 	
 	
 doubt.models	

 	
 	
 doubt.models.boot	

 	
 	
 doubt.models.boot.boot	

 	
 	
 doubt.models.glm	

 	
 	
 doubt.models.glm.quantile_loss	

 	
 	
 doubt.models.glm.quantile_regressor	

 	
 	
 doubt.models.tree	

 	
 	
 doubt.models.tree.forest	

 	
 	
 doubt.models.tree.tree	

 	
 	
 doubt.models.tree.utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | M
 | N
 | P
 | Q
 | S
 | T
 | W
 | Y

A

 	
 	Airfoil (class in doubt.datasets.airfoil)

B

 	
 	BaseTreeQuantileRegressor (class in doubt.models.tree.tree)

 	BikeSharingDaily (class in doubt.datasets.bike_sharing_daily)

 	
 	BikeSharingHourly (class in doubt.datasets.bike_sharing_hourly)

 	Blog (class in doubt.datasets.blog)

 	Boot (class in doubt.models.boot.boot)

C

 	
 	cache (doubt.datasets.airfoil.Airfoil attribute)

 	(doubt.datasets.bike_sharing_daily.BikeSharingDaily attribute)

 	(doubt.datasets.bike_sharing_hourly.BikeSharingHourly attribute)

 	(doubt.datasets.blog.Blog attribute)

 	(doubt.datasets.concrete.Concrete attribute)

 	(doubt.datasets.cpu.CPU attribute)

 	(doubt.datasets.facebook_comments.FacebookComments attribute)

 	(doubt.datasets.facebook_metrics.FacebookMetrics attribute)

 	(doubt.datasets.fish_bioconcentration.FishBioconcentration attribute)

 	(doubt.datasets.fish_toxicity.FishToxicity attribute)

 	(doubt.datasets.forest_fire.ForestFire attribute)

 	(doubt.datasets.gas_turbine.GasTurbine attribute)

 	(doubt.datasets.nanotube.Nanotube attribute)

 	(doubt.datasets.new_taipei_housing.NewTaipeiHousing attribute)

 	(doubt.datasets.parkinsons.Parkinsons attribute)

 	(doubt.datasets.power_plant.PowerPlant attribute)

 	(doubt.datasets.protein.Protein attribute)

 	(doubt.datasets.servo.Servo attribute)

 	(doubt.datasets.solar_flare.SolarFlare attribute)

 	(doubt.datasets.space_shuttle.SpaceShuttle attribute)

 	(doubt.datasets.stocks.Stocks attribute)

 	(doubt.datasets.superconductivity.Superconductivity attribute)

 	(doubt.datasets.tehran_housing.TehranHousing attribute)

 	(doubt.datasets.yacht.Yacht attribute)

 	columns (doubt.datasets.airfoil.Airfoil attribute)

 	(doubt.datasets.bike_sharing_daily.BikeSharingDaily attribute)

 	(doubt.datasets.bike_sharing_hourly.BikeSharingHourly attribute)

 	(doubt.datasets.blog.Blog attribute)

 	(doubt.datasets.concrete.Concrete attribute)

 	(doubt.datasets.cpu.CPU attribute)

 	(doubt.datasets.facebook_comments.FacebookComments attribute)

 	(doubt.datasets.facebook_metrics.FacebookMetrics attribute)

 	(doubt.datasets.fish_bioconcentration.FishBioconcentration attribute)

 	(doubt.datasets.fish_toxicity.FishToxicity attribute)

 	(doubt.datasets.forest_fire.ForestFire attribute)

 	(doubt.datasets.gas_turbine.GasTurbine attribute)

 	(doubt.datasets.nanotube.Nanotube attribute)

 	(doubt.datasets.new_taipei_housing.NewTaipeiHousing attribute)

 	(doubt.datasets.parkinsons.Parkinsons attribute)

 	(doubt.datasets.power_plant.PowerPlant attribute)

 	(doubt.datasets.protein.Protein attribute)

 	(doubt.datasets.servo.Servo attribute)

 	(doubt.datasets.solar_flare.SolarFlare attribute)

 	(doubt.datasets.space_shuttle.SpaceShuttle attribute)

 	(doubt.datasets.stocks.Stocks attribute)

 	(doubt.datasets.superconductivity.Superconductivity attribute)

 	(doubt.datasets.tehran_housing.TehranHousing attribute)

 	(doubt.datasets.yacht.Yacht attribute)

 	
 	compute_statistic() (in module doubt.models.boot.boot)

 	Concrete (class in doubt.datasets.concrete)

 	CPU (class in doubt.datasets.cpu)

D

 	
 	
 doubt

 	module

 	
 doubt.datasets

 	module

 	
 doubt.datasets.airfoil

 	module

 	
 doubt.datasets.bike_sharing_daily

 	module

 	
 doubt.datasets.bike_sharing_hourly

 	module

 	
 doubt.datasets.blog

 	module

 	
 doubt.datasets.concrete

 	module

 	
 doubt.datasets.cpu

 	module

 	
 doubt.datasets.facebook_comments

 	module

 	
 doubt.datasets.facebook_metrics

 	module

 	
 doubt.datasets.fish_bioconcentration

 	module

 	
 doubt.datasets.fish_toxicity

 	module

 	
 doubt.datasets.forest_fire

 	module

 	
 doubt.datasets.gas_turbine

 	module

 	
 doubt.datasets.nanotube

 	module

 	
 doubt.datasets.new_taipei_housing

 	module

 	
 doubt.datasets.parkinsons

 	module

 	
 doubt.datasets.power_plant

 	module

 	
 	
 doubt.datasets.protein

 	module

 	
 doubt.datasets.servo

 	module

 	
 doubt.datasets.solar_flare

 	module

 	
 doubt.datasets.space_shuttle

 	module

 	
 doubt.datasets.stocks

 	module

 	
 doubt.datasets.superconductivity

 	module

 	
 doubt.datasets.tehran_housing

 	module

 	
 doubt.datasets.yacht

 	module

 	
 doubt.models

 	module

 	
 doubt.models.boot

 	module

 	
 doubt.models.boot.boot

 	module

 	
 doubt.models.glm

 	module

 	
 doubt.models.glm.quantile_loss

 	module

 	
 doubt.models.glm.quantile_regressor

 	module

 	
 doubt.models.tree

 	module

 	
 doubt.models.tree.forest

 	module

 	
 doubt.models.tree.tree

 	module

 	
 doubt.models.tree.utils

 	module

F

 	
 	FacebookComments (class in doubt.datasets.facebook_comments)

 	FacebookMetrics (class in doubt.datasets.facebook_metrics)

 	feature_importances_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	FishBioconcentration (class in doubt.datasets.fish_bioconcentration)

 	FishToxicity (class in doubt.datasets.fish_toxicity)

 	
 	fit() (doubt.models.glm.quantile_regressor.QuantileRegressor method)

 	(doubt.models.tree.forest.QuantileRegressionForest method)

 	(doubt.models.tree.tree.BaseTreeQuantileRegressor method)

 	(in module doubt.models.boot.boot)

 	ForestFire (class in doubt.datasets.forest_fire)

G

 	
 	GasTurbine (class in doubt.datasets.gas_turbine)

M

 	
 	max_features_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	
 module

 	doubt

 	doubt.datasets

 	doubt.datasets.airfoil

 	doubt.datasets.bike_sharing_daily

 	doubt.datasets.bike_sharing_hourly

 	doubt.datasets.blog

 	doubt.datasets.concrete

 	doubt.datasets.cpu

 	doubt.datasets.facebook_comments

 	doubt.datasets.facebook_metrics

 	doubt.datasets.fish_bioconcentration

 	doubt.datasets.fish_toxicity

 	doubt.datasets.forest_fire

 	doubt.datasets.gas_turbine

 	doubt.datasets.nanotube

 	doubt.datasets.new_taipei_housing

 	doubt.datasets.parkinsons

 	doubt.datasets.power_plant

 	doubt.datasets.protein

 	doubt.datasets.servo

 	doubt.datasets.solar_flare

 	doubt.datasets.space_shuttle

 	doubt.datasets.stocks

 	doubt.datasets.superconductivity

 	doubt.datasets.tehran_housing

 	doubt.datasets.yacht

 	doubt.models

 	doubt.models.boot

 	doubt.models.boot.boot

 	doubt.models.glm

 	doubt.models.glm.quantile_loss

 	doubt.models.glm.quantile_regressor

 	doubt.models.tree

 	doubt.models.tree.forest

 	doubt.models.tree.tree

 	doubt.models.tree.utils

N

 	
 	n_features_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	n_outputs_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	
 	Nanotube (class in doubt.datasets.nanotube)

 	NewTaipeiHousing (class in doubt.datasets.new_taipei_housing)

P

 	
 	Parkinsons (class in doubt.datasets.parkinsons)

 	PowerPlant (class in doubt.datasets.power_plant)

 	predict() (doubt.models.glm.quantile_regressor.QuantileRegressor method)

 	(doubt.models.tree.forest.QuantileRegressionForest method)

 	(doubt.models.tree.tree.BaseTreeQuantileRegressor method)

 	(in module doubt.models.boot.boot)

 	
 	Protein (class in doubt.datasets.protein)

Q

 	
 	quantile_loss() (in module doubt.models.glm.quantile_loss)

 	QuantileRegressionForest (class in doubt.models.tree.forest)

 	
 	QuantileRegressionTree (class in doubt.models.tree.tree)

 	QuantileRegressor (class in doubt.models.glm.quantile_regressor)

S

 	
 	score() (doubt.models.glm.quantile_regressor.QuantileRegressor method)

 	Servo (class in doubt.datasets.servo)

 	shape (doubt.datasets.airfoil.Airfoil attribute)

 	(doubt.datasets.bike_sharing_daily.BikeSharingDaily attribute)

 	(doubt.datasets.bike_sharing_hourly.BikeSharingHourly attribute)

 	(doubt.datasets.blog.Blog attribute)

 	(doubt.datasets.concrete.Concrete attribute)

 	(doubt.datasets.cpu.CPU attribute)

 	(doubt.datasets.facebook_comments.FacebookComments attribute)

 	(doubt.datasets.facebook_metrics.FacebookMetrics attribute)

 	(doubt.datasets.fish_bioconcentration.FishBioconcentration attribute)

 	(doubt.datasets.fish_toxicity.FishToxicity attribute)

 	(doubt.datasets.forest_fire.ForestFire attribute)

 	(doubt.datasets.gas_turbine.GasTurbine attribute)

 	(doubt.datasets.nanotube.Nanotube attribute)

 	(doubt.datasets.new_taipei_housing.NewTaipeiHousing attribute)

 	(doubt.datasets.parkinsons.Parkinsons attribute)

 	(doubt.datasets.power_plant.PowerPlant attribute)

 	(doubt.datasets.protein.Protein attribute)

 	(doubt.datasets.servo.Servo attribute)

 	(doubt.datasets.solar_flare.SolarFlare attribute)

 	(doubt.datasets.space_shuttle.SpaceShuttle attribute)

 	(doubt.datasets.stocks.Stocks attribute)

 	(doubt.datasets.superconductivity.Superconductivity attribute)

 	(doubt.datasets.tehran_housing.TehranHousing attribute)

 	(doubt.datasets.yacht.Yacht attribute)

 	
 	smooth_quantile_loss() (in module doubt.models.glm.quantile_loss)

 	SolarFlare (class in doubt.datasets.solar_flare)

 	SpaceShuttle (class in doubt.datasets.space_shuttle)

 	Stocks (class in doubt.datasets.stocks)

 	Superconductivity (class in doubt.datasets.superconductivity)

T

 	
 	TehranHousing (class in doubt.datasets.tehran_housing)

 	
 	tree_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

W

 	
 	weighted_percentile() (in module doubt.models.tree.utils)

Y

 	
 	y_train_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	
 	y_train_leaves_ (doubt.models.tree.tree.QuantileRegressionTree attribute)

 	Yacht (class in doubt.datasets.yacht)

 nav.xhtml

 Table of Contents

 		
 Welcome to doubt’s documentation!

 		
 doubt

 		
 doubt package

 		
 Subpackages

 		
 Module contents

_static/file.png

_static/minus.png

_static/plus.png

